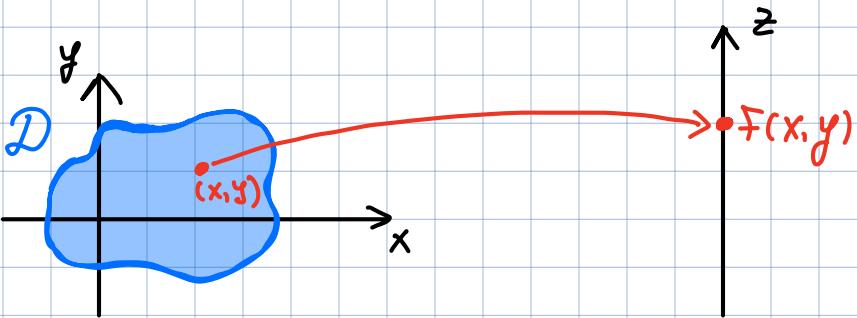


Last time: Functions of several variables

Function of two variables:



$$f: (x, y) \mapsto f(x, y)$$

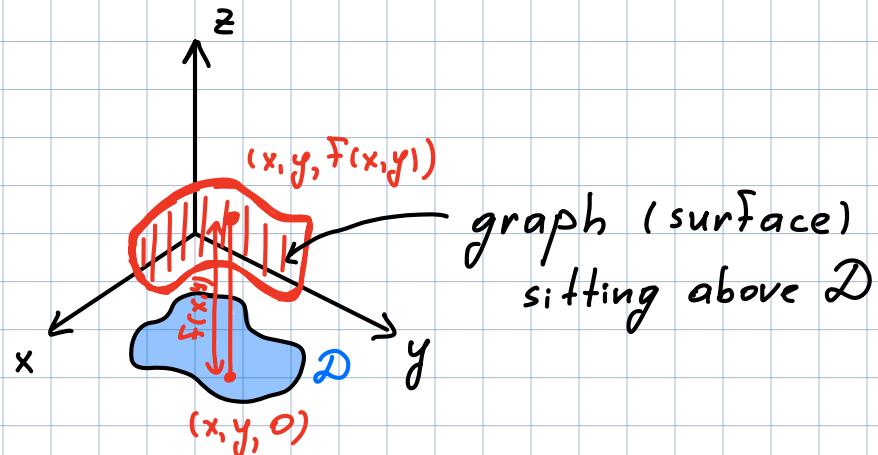
in $D \subset \mathbb{R}^2$
Z domain

in \mathbb{R}

range: set of all values of $f(x, y) \subset \mathbb{R}$

domain: all (x, y) s.t. $f(x, y)$ is well-defined.

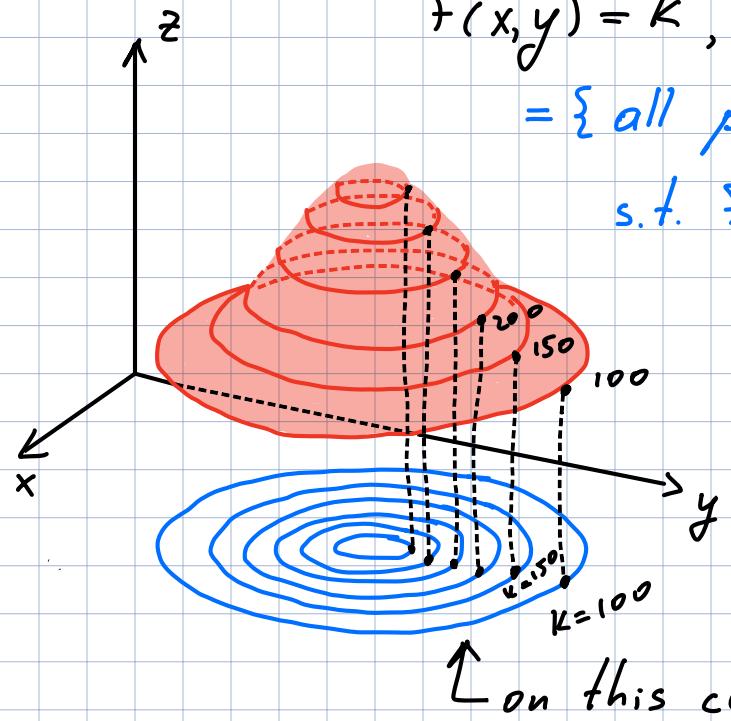
Graph: Set of points (x, y, z) in \mathbb{R}^3
with $(x, y) \in D$, $z = f(x, y)$



Level curves: curves with eq.

$$f(x, y) = k, \text{ i.e.}$$

= {all points (x, y)
s.t. $f(x, y) = k\}$

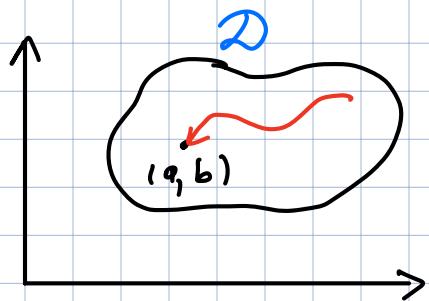


Functions of 3 variables:

$$f(x, y, z)$$

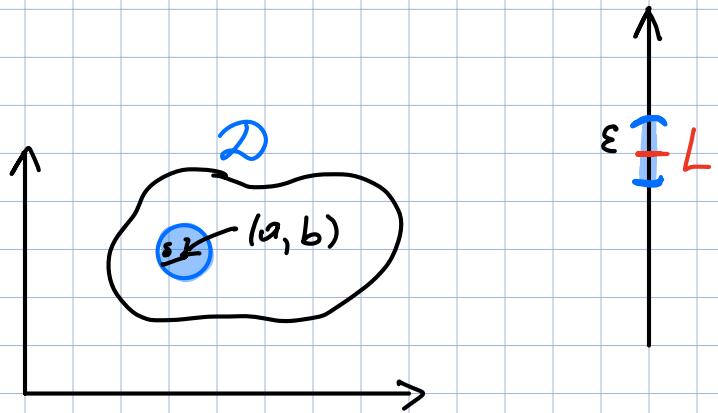
Limits and continuity:

$\lim_{(x,y) \rightarrow (a,b)} f(x,y) = L$ - The limit of $f(x,y)$ as (x,y) approaches (a,b)



- if values of $f(x,y)$ approach L as (x,y) approaches (a,b) along any path in the domain \mathcal{D}

- we can make $f(x,y)$ as close to L as we want by taking (x,y) sufficiently close to (a,b)



If for every number $\epsilon > 0$ there is a corresponding number $\delta > 0$ s.t. if $(x,y) \in \mathcal{D}$ and $0 < \sqrt{(x-a)^2 + (y-b)^2} < \delta$ then $|f(x,y) - L| < \epsilon$

$$\text{Ex: } f(x,y) = \frac{\sin(x^2+y^2)}{x^2+y^2}$$

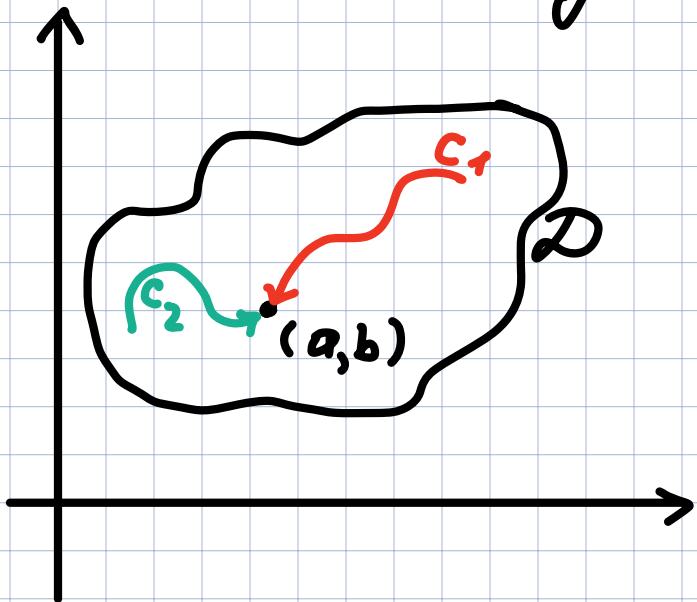
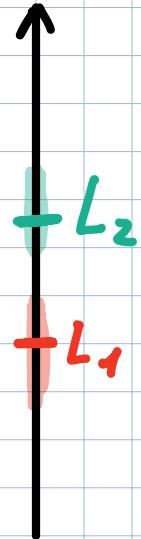
$$\lim_{(x,y) \rightarrow (0,0)} f(x,y) = 1$$

If $f(x,y) \rightarrow L_1$ as $(x,y) \rightarrow (a,b)$ along C_1

AND $f(x,y) \rightarrow L_2$ as $(x,y) \rightarrow (a,b)$ along C_2

where $L_1 \neq L_2$, then

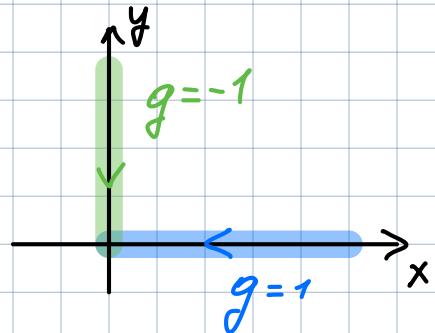
$\lim_{(x,y) \rightarrow (a,b)} f(x,y)$ does **NOT** exist.



$$\underline{\underline{Ex:}} \quad g(x,y) = \frac{x^2 - y^2}{x^2 + y^2}$$

$$\lim_{(x,y) \rightarrow 0} g(x,y) = ?$$

Sol:



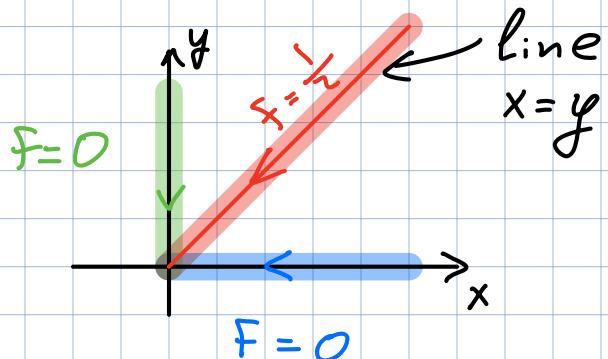
approaching along x-axis g stays 1

approaching along y-axis g stays -1

\Rightarrow limit as $(x,y) \rightarrow (0,0)$ does NOT exist!

$$\underline{\underline{Ex:}} \quad f(x,y) = \frac{xy}{x^2 + y^2}$$

$$\lim_{(x,y) \rightarrow 0} f(x,y) = ?$$



approaching along x-axis f stays 0

approaching along y-axis f stays 0

BUT approaching along $x=y$ line $f = \frac{1}{2}$

$$0 \neq \frac{1}{2}$$

\Rightarrow limit as $(x,y) \rightarrow (0,0)$ does NOT exist!

Ex: Find $\lim_{(x,y) \rightarrow (0,0)} \frac{3x^2y}{x^2+y^2}$ if it exists.

Sol: 1) We suspect the limit is 0.

2) Let $\varepsilon > 0$, WANTED $\delta > 0$ such that

if $0 < \sqrt{x^2+y^2} < \delta$ then $\left| \frac{3x^2y}{x^2+y^2} - 0 \right| < \varepsilon$

$\left(\Leftrightarrow \frac{3x^2|y|}{x^2+y^2} < \varepsilon \right)$

3) Note that $x^2 \leq x^2+y^2 \Rightarrow \frac{x^2}{x^2+y^2} \leq 1$ therefore

$$\frac{3x^2|y|}{x^2+y^2} \leq 3|y| = 3\sqrt{y^2} \leq 3\sqrt{x^2+y^2} \leq 3\delta$$

CHOOSE $\delta = \frac{\varepsilon}{3}$

$$\lim_{(x,y) \rightarrow (0,0)} \frac{3x^2y}{x^2+y^2} = 0$$

• $f(x, y)$ is continuous at (a, b) if $\lim_{(x,y) \rightarrow (a,b)} f(x, y) = f(a, b)$

• f is continuous on \mathcal{D} if f is continuous at each point (a, b) in \mathcal{D}

Ex: a polynomial: $f(x, y) = x^2 + xy + y^2$ is cont. on \mathbb{R}^2

a rational function: $g(x, y) = \frac{x+2y^2}{x^2+y^2}$ is cont. in its domain $\mathbb{R}^2 \setminus \{0, 0\}$

Ex: Evaluate $\lim_{(x,y) \rightarrow (1, 2)} (x^2y^3 - x^3y^2 + 3x + 2y)$

Sol: $f(x, y) = x^2y^3 - x^3y^2 + 3x + 2y$ is a polynomial \Rightarrow cont. on \mathbb{R}^2

$$\Rightarrow \lim_{(x,y) \rightarrow (1, 2)} f(x, y) = f(1, 2) = 1^2 \cdot 2^3 - 1^3 \cdot 2^2 + 3(1) + 2(2) = 11$$

Ex: Where is $f(x, y) = \frac{x^2 - y^2}{x^2 + y^2}$ continuous?

Sol: Discontinuous at $(0, 0)$ [NOT defined there]

Rational fct. is continuous on its domain $\mathcal{D} = \{(x, y) \mid (x, y) \neq (0, 0)\}$

Partial derivatives

$f(x,y)$ partial derivative w.r.t. x at (a,b) :

set $g(x) = f(x, b)$

\nwarrow function of single variable

\nearrow constant

\downarrow variable

$$f_x(a,b) = g'(a)$$

Likewise, partial derivative w.r.t. y at (a,b) :

set $h(y) = f(a,y)$

$$f_y(a,b) = h'(b)$$

I.e. to find $f_x(x,y)$, view y as a constant, differentiate w.r.t. x

to find $f_y(x,y)$, view x as a constant, differentiate w.r.t. y

Notation: $\frac{\partial f}{\partial x} = f_x(x,y)$, $\frac{\partial f}{\partial y} = f_y(x,y)$

Ex: $f(x, y) = x^3 + x^2y^3 - 2y^2$ Find $f_x(2, 1)$, $f_y(2, 1)$.

Sol: $f_x(x, y) = 3x^2 + 2xy^3$ $f_x(2, 1) = 3 \cdot 2^2 + 2 \cdot 2 \cdot 1^3 = 16$

$$f_y(x, y) = 3x^2y^2 - 4y$$
 $f_y(2, 1) = 3 \cdot 2^2 \cdot 1^2 - 4 \cdot 1 = 8$

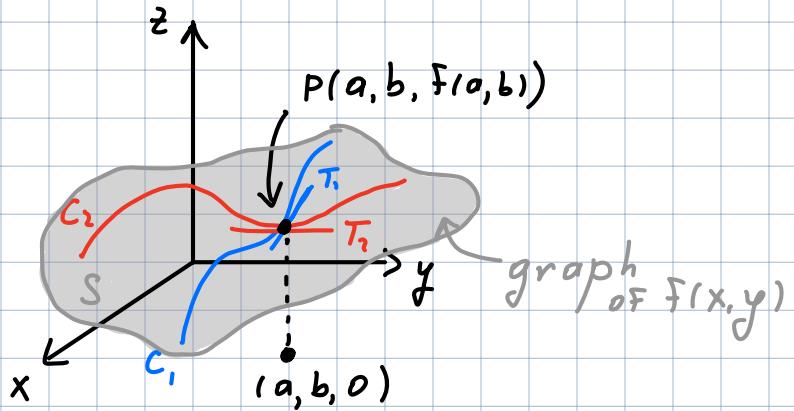
Ex: $f(x, y) = \sin\left(\frac{x}{1+y}\right)$ Find f_x and f_y

$$\frac{\partial f}{\partial x} = \cos\left(\frac{x}{1+y}\right) \cdot \frac{\partial}{\partial x}\left(\frac{x}{1+y}\right) = \cos\left(\frac{x}{1+y}\right) \cdot \frac{1}{1+y}$$

chain rule

$$\frac{\partial f}{\partial y} = \cos\left(\frac{x}{1+y}\right) \cdot \frac{\partial}{\partial y}\left(\frac{x}{1+y}\right) = -\cos\left(\frac{x}{1+y}\right) \frac{x}{(1+y)^2}$$

Interpretations of partial derivatives:



C_1 : graph of $g(x) = f(x, b)$
 = intersection of S with plane $y=b$

C_2 : graph of $h(y) = f(a, y)$
 = intersection of S with plane $x=a$

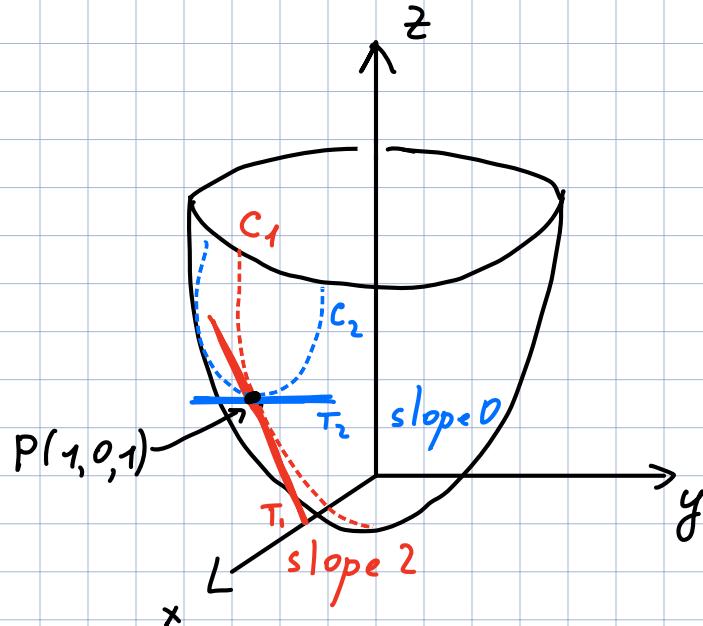
$f_x(a, b) = \text{slope of tangent line } T_1 \text{ to } C_1 \text{ at } P(a, b, f(a, b))$

$f_y(a, b) = \text{slope of tangent line } T_2 \text{ to } C_2 \text{ at } P(a, b, f(a, b))$

Ex: $f(x, y) = x^2 + y^2$

$$f_x(1, 0) = 2x \Big|_{(1, 0)} = 2$$

$$f_y(1, 0) = 2y \Big|_{(1, 0)} = 0$$



Higher derivatives:

$$\left. \begin{array}{l} f_{xx} = (f_x)_x = \frac{\partial^2 f}{\partial x^2}, \quad f_{xy} = (f_x)_y = \frac{\partial^2 f}{\partial x \partial y}, \\ f_{yx} = (f_y)_x = \frac{\partial^2 f}{\partial y \partial x}, \quad f_{yy} = (f_y)_y = \frac{\partial^2 f}{\partial y^2} \end{array} \right\} \begin{array}{l} \text{2nd order} \\ \text{derivatives} \end{array}$$

Ex: $f(x, y) = x^3 + x^2 y^3 - 2y^2$

$$\begin{array}{lll} f_x = 3x^2 + 2xy^3 & \rightsquigarrow f_{xx} = 6x + 2y^3 & f_{yx} = \cancel{6xy^2} \\ f_y = 3x^2y^2 - 4y & f_{xy} = \cancel{6xy^2} & f_{yy} = 6x^2y - 4 \end{array}$$

Rmk: $f_{xy} = f_{yx}$ - this is true for any f !

- doesn't matter, in which order we are taking partial derivatives

Clairaut's Thm: $f_{xy}(a, b) = f_{yx}(a, b)$

$$\quad \quad \quad \parallel f_{xxy} = f_{yxy} = f_{yyx} \parallel$$

Ex: Let z be defined implicitly by $x^3 + y^3 + z^3 + 6xyz = 1$ (*).
Find $\frac{\partial z}{\partial x}$, $\frac{\partial z}{\partial y}$.

Sol: apply $\frac{\partial}{\partial x}$ to (*), keeping y constant:

$$3x^2 + 3z^2 \frac{\partial z}{\partial x} + 6yz + 6xy \frac{\partial z}{\partial x} = 0$$

$$\Rightarrow \frac{\partial z}{\partial x} = - \frac{3x^2 + 6yz}{3z^2 + 6xy} = - \frac{x^2 + 2yz}{z^2 + 2xy}$$

apply $\frac{\partial}{\partial y}$ to (*), keeping x constant:

$$3y^2 + 3z^2 \frac{\partial z}{\partial y} + 6xz + 6xy \frac{\partial z}{\partial y} = 0$$

$$\Rightarrow \frac{\partial z}{\partial y} = - \frac{y^2 + 2xz}{z^2 + 2xy}$$

Ex: $f(x, y, z) = \sin(3x + yz)$. Calculate $f_{xxxz} = \frac{\partial^4 f}{\partial x^2 \partial y \partial z}$

Sol: $f_x = 3 \cos(3x + yz)$

$$f_{xx} = -9 \sin(3x + yz)$$

$$f_{xxy} = -9z \cos(3x + yz)$$

$$f_{xxxz} = 9yz \sin(3x + yz) - 9 \cos(3x + yz)$$

Laplace equation: $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0 \quad (*)$

Partial differential equation

Ex: Check that $u(x, y) = e^x \sin y$ is a solution of $(*)$.

Sol: $u_x = e^x \sin y$ $u_{xx} = e^x \sin y$ $u_y = e^x \cos y$ $u_{yy} = -e^x \sin y$ $\Rightarrow u_{xx} + u_{yy} = 0$

The Chain Rule:

Reminder: $y = f(x)$, $x = g(t)$ then y is indirectly a function of t

and $\frac{dy}{dt} = \frac{dy}{dx} \cdot \frac{dx}{dt} = f'(x) \cdot g'(t) = f'(g(t)) \cdot g'(t)$

[Case 0]

Case 1: $z = f(x, y)$, $x = g(t)$, $y = h(t)$

then

$$\frac{dz}{dt} = \frac{\partial f}{\partial x} \cdot \frac{dx}{dt} + \frac{\partial f}{\partial y} \cdot \frac{dy}{dt}$$

$$\left(\text{or } \frac{\partial z}{\partial x} \cdot \frac{dx}{dt} + \frac{\partial z}{\partial y} \cdot \frac{dy}{dt} \right)$$

Ex: $z = \sqrt{1+xy}$, $x = \sin t$, $y = t^2$. a) Find $\frac{dz}{dt}$ b) Find $\frac{d^2z}{dt^2}$ at $t = \pi$

Sol: a) $\frac{dz}{dt} = \frac{\partial z}{\partial x} \cdot \frac{dx}{dt} + \frac{\partial z}{\partial y} \cdot \frac{dy}{dt} = \frac{y}{2\sqrt{1+xy}} \cos t + \frac{x}{2\sqrt{1+xy}} 2t$

$$= \frac{\frac{t^2}{2} \cos t + t \sin t}{\sqrt{1+t^2 \sin t}}$$

(b) $t = \pi \Rightarrow x = 0, y = \pi^2 \rightsquigarrow -\frac{\pi^2}{2}$

Case 2: $z = f(x, y)$ and $x = g(s, t)$, $y = h(s, t)$

then $\frac{\partial z}{\partial s} = \frac{\partial z}{\partial x} \cdot \frac{\partial x}{\partial s} + \frac{\partial z}{\partial y} \cdot \frac{\partial y}{\partial s}$ and $\frac{\partial z}{\partial t} = \frac{\partial z}{\partial x} \cdot \frac{\partial x}{\partial t} + \frac{\partial z}{\partial y} \cdot \frac{\partial y}{\partial t}$

Ex: $z = (x-y)^5$, $x = s^2t$, $y = st^2$. Find $\frac{\partial z}{\partial s}$, $\frac{\partial z}{\partial t}$.

Sol:

$$\begin{aligned}\frac{\partial z}{\partial s} &= \frac{\partial z}{\partial x} \cdot \frac{\partial x}{\partial s} + \frac{\partial z}{\partial y} \cdot \frac{\partial y}{\partial s} = 5(x-y)^4 \cdot 2st - 5(x-y)^4 \cdot t^2 \\ &= 5(s^2t - st^2)^4 (2st - t^2)\end{aligned}$$

$$\begin{aligned}\frac{\partial z}{\partial t} &= \frac{\partial z}{\partial x} \cdot \frac{\partial x}{\partial t} + \frac{\partial z}{\partial y} \cdot \frac{\partial y}{\partial t} = 5(x-y)^4 s^2 - 5(x-y)^4 \cdot 2st \\ &= 5(s^2t - st^2)^4 (s^2 - 2st)\end{aligned}$$

General case of Chain Rule:

$u = u(\underbrace{x_1, \dots, x_n}_{n \text{ variables}})$ and for each j : $x_j = x_j(\underbrace{t_1, \dots, t_m}_{m \text{ variables}})$

then

$$\frac{\partial u}{\partial t_i} = \underbrace{\frac{\partial u}{\partial x_1} \frac{\partial x_1}{\partial t_i} + \dots + \frac{\partial u}{\partial x_n} \frac{\partial x_n}{\partial t_i}}_{n \text{ terms}}$$

Ex: $u = x + yz$, $x = t$, $y = \ln t$, $z = \sin t$

$$\begin{aligned} \frac{du}{dt} &= \frac{\partial u}{\partial x} \frac{dx}{dt} + \frac{\partial u}{\partial y} \frac{dy}{dt} + \frac{\partial u}{\partial z} \frac{dz}{dt} = 1 \cdot 1 + z \frac{1}{t} + y \cos t \\ &= 1 + \frac{\sin t}{t} + \ln t \cos t \end{aligned}$$

Implicit differentiation: If $y = f(x)$ is defined implicitly, by $F(x, y) = 0$

We can find $\frac{dy}{dx}$ via $0 = \frac{d}{dx} F(x, y) = \frac{\partial F}{\partial x} \underbrace{\frac{dx}{dx}}_{=1} + \frac{\partial F}{\partial y} \frac{dy}{dx}$

$$\Rightarrow \frac{dy}{dx} = - \frac{\frac{\partial F}{\partial x}}{\frac{\partial F}{\partial y}} = - \frac{F_x}{F_y}$$

Ex: y defined by $x^2 + y^3 = 1$ Find $y'(x)$.

Sol: $F(x, y) = x^2 + y^3 - 1 \Rightarrow \frac{dy}{dx} = - \frac{F_x}{F_y} = - \frac{2x}{3y^2}$

Ex: $z = z(x, y)$ defined by $x^2 + y^5 + z^3 = 0$. Find $\frac{\partial z}{\partial x}, \frac{\partial z}{\partial y}$

Sol: $\frac{\partial}{\partial x} (*): 2x + 0 + 3z^2 \frac{\partial z}{\partial x} = 0 \Rightarrow \frac{\partial z}{\partial x} = - \frac{2x}{3z^2}$

$\frac{\partial}{\partial y} (*): 0 + 5y^4 + 3z^2 \frac{\partial z}{\partial y} = 0 \Rightarrow \frac{\partial z}{\partial y} = - \frac{5y^4}{3z^2}$